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APPROXIMATE SOLUTION OF THE LAMINAR BOUNDARY LAYER EQUATION

FOR A NON-NEWTONIAN FLUID ON A PLATE
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The laminar boundary layer equations for a non-Newtonian flnid on a
flat plate are reduced to Prandtl-Mises variables and solved approxi=
mately in quadratures, The velocity profiles and the resistance coef-
ficients are given for certain values of n. Agreement with the results
of exact calculations is goed.

For a fluid satisfying the rheological power law
t=K (@‘,)“, @
9y

the laminar boundary layer equations on a flat plate,
in dimensionless form, are [1]
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The boundary conditions are

when gy =0 14, =0, v, =0

1

when 1y = @0 1y = 1, (4)

Introducing the stream function y;, we replace the
second equation of (2) by the relations

wo= I g o O (5)
Oy 0x4

We shall pass from x;, yq to the new independent
variables xq, 94{xy, y;)—Prandtl-Mises variables (2],
and transform the first equation of (2) into these
variables. Thus, if now takes the form
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where we have designated
z=uY2. (7

Taking the straight line y, = 0 as the zero stream
line (¢, = 0), we write the boundary conditions (4),
taking (7) into account, as

Wheﬂ’q}lzo Z:-_O’
when Y= z= 1/2. (8)
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Velocity distributions in the boundary layer
with; 1) n = 3; 2) 2; 3) 1.67; 4) 1.33; 5) 1.0;
8) 0.7; 7) 0.7; 8) 0.6; 9) 0.5; and 10} 0.3.

If z is regarded as being a function of only one variable
L=V 20 (b myay 0, ©

then (6) becomes the ordinary differential equation
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where the primes denote differentiation with respect
to ¢.
The boundary conditions (8) are

when { =0 z=0;

when { = o0 z = 1/2. 1an

Equation (10) is easily integrated, if we put z =
=z, = 1/4 as a zeroth-order approximation (under
the square root), i.e., half of its value at the outer
edge of the boundary layer, as was done in [3]. We
then obtain the equation

~§=~;(Z’>Mz”:» L Ly ay

T 2(n—1) dg
which was examined in [4, 5] for n < 1 in connection
with the problem of unsteady motion of a non-Newtonian
fluid on an infinite plate.

For n = 1 (Newtonian fluid), the soluticn of (12}
with boundary conditions (11) has the form

L13)
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Comparison of the Approximate and Exact Solutions
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0.1502 0.0488 0.20:3 0.1941 — 5.2
0.8236 0.5236 0.3277 0.3224 — 1.6
.67 1.230 0.,7602 U015 — — —
.5 1.697 0.7200 U 4400 0.4378 — 2.6
e 2.160 0.67550 0.1828 —_ — —
4/3>1.33 2.631 0.6742 0.5070 — — —
6/3 = 1.2 4.565 0.6341 0.5643 — — —
I — —_— 04,6709 0.66-4 O.66:42 1.0
4,5 =0.8 5.782 0.1835 0.8152 — U809 0.5
7/9 22 0.78 5.311 0.4743 0.5350 — - —
3/4=0.75 4.851 0.4623 0.5601 — - -
5/7=0.71 4.407 0.4446 0.8044 — — —
3/5 = 0.6 3.651 - 0.4935 j 1.019 — 1.017 0.2
1/2=0.5 3,404 0.3451 i.in2 150 1. 151 0.1
1/3>0.33 3,674 0.2608 | 1.435 —_ - —
i

For n # 1, integrating (12) twice, and taking the
first condition of (11) into account, we find

!
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2= [ln—D(C~)" a.

g

(14

The arbitrary constant C for n < 1 is determined
from the second condition of (11), and for n > 1 from
the condition

when { ={3 2 =0, 2= 1/2, (15)

where {g is the value appropriate to the finite thick-
ness of the boundary layer [1, 5].

The integral (14), as an integral of a binomial dif-
ferential, may be expressed in finite form only for
certain values of n.

In view of (7), the velocity profiles are calculated
from the formula

(0 =V 22(D). (16)
From (5) and (9) it follows that
t ¢ d
R R P S
u1 (%)

0

Equations (16) and (17) give the parametric relation
between u, and 7.

The calculated velocity profiles are shown in the
figure. Also shown, is the curve corresponding to
the exact solution of the Blasius equation [2] (dashed
curve, n=1); its difference from the approximation is
less than 4%,

With the aid of (1), (3), (5), and (9) let us de-
termine the local frictional drag of the plate

¢ = 21,/p U* = B/RY"'™™, (18)
where

B, =2V 2n(l + )" 2 0), R, =p U—rxv/K. (19)

The quantities required in calculating the velocity
profiles and drag are given in the table.

The table also shows a comparison of some of the
values By, obtained in the present paper with the exact
data of the authors of [1] and [6], From the good
agreement of these quantities and of the velocity pro-
files for n = 1 the conclusion may be drawn that the
first approximation usedin solving Eq. (10) is adequate
for practical purposes.

NOTATION

r—frictional stress, Ty—the same at the wall; K, n—rheological
characteristics of fluid; x—longitudinal coordinate; y—transverse co-
ordinate; u, v—projection of velocity vector on x and y axes, respec-
tively; U—velocity of external stream; L~characteristic length; R—
Reynolds number; Rx—local Reynolds number.
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